
Operating System:
Chap11 File System
Implementation
National Tsing-Hua University
2016, Fall Semester

Chapter11 FS Implementation Operating System Concepts – NTHU LSA Lab 2

Overview

 File-System Structure
 File System Implementation
 Disk Allocation Methods
 Free-Space Management

Chapter11 FS Implementation Operating System Concepts – NTHU LSA Lab 3

File-System Structure
 I/O transfers between memory and disk are

performed in units of blocks
 one block is one or more sectors
 one sector is usually 512 bytes

 One OS can support more than 1 FS types
NTFS, FAT32

 Two design problems in FS
 interface to user programs
 interface to physical storage (disk)

Chapter11 FS Implementation Operating System Concepts – NTHU LSA Lab 4

Layered File System

app program (API)

file-organization module

logical file system

basic file system

I/O control

devices

read(fh, buf, size)

logical  physical mapping

manages metadata (fp, access)

read d1, c73, t5, s10

store read register 145, 5

seagate disk

Chapter11 FS Implementation Operating System Concepts – NTHU LSA Lab 5

test.exe

LFS (NTFS)

BFS (NTFS)

I/O control

disk type I

LFS (UFS)

FOM (NTFS) FOM (UFS)

BFS (UFS)

read system call

FS manager

I/O control

disk type II

I/O control

disk type III

Chapter11 FS Implementation Operating System Concepts – NTHU LSA Lab 6

File-System
Implementation

Chapter11 FS Implementation Operating System Concepts – NTHU LSA Lab 7

On-Disk Structure
 Boot control block (per partition): information needed

to boot an OS from that partition
 typical the first block of the partition (empty means no OS)
 UFS (Unix File Sys.): boot block, NTFS: partition boot sector

 Partition control block (per partition): partition details
 details: # of blocks, block size, free-block-list, free FCB

pointers, etc
 UFS: superblock, NTFS: Master File Table

 File control block (per file): details regarding a file
 details: permissions, size, location of data blocks
 UFS: inode, NTFS: stored in MFT (relational database)

 Directory structure (per file system): organize files

Chapter11 FS Implementation

On-Disk Structure

Operating System Concepts – NTHU LSA Lab 8

Boot Control
Block (Optional)
Partition Control

Block
List of Directory
Control Blocks

Lis of File
Control Blocks

Data Blocks

Partition File Control Block (FCB)

Chapter11 FS Implementation Operating System Concepts – NTHU LSA Lab 9

In-Memory Structure
 in-memory partition table: information about

each mounted partition
 in-memory directory structure: information of

recently accessed directories
 system-wide open-file table: contain a copy of

each opened file’s FCB
 per-process open-file table: pointer (file

handler/descriptor) to the corresponding
entry in the above table

Chapter11 FS Implementation Operating System Concepts – NTHU LSA Lab 10

File-Open & File-Read

(File handler/file descriptor)

Chapter11 FS Implementation Operating System Concepts – NTHU LSA Lab 11

File Creation Procedure
1. OS allocates a new FCB
2. Update directory structure

1. OS reads in the corresponding directory
structure into memory

2. Updates the dir structure with the new file
name and the FCB

3. (After file being closed), OS writes back the
directory structure back to disk

3. The file appears in user’s dir command

Chapter11 FS Implementation Operating System Concepts – NTHU LSA Lab 12

Virtual File System
 VFS provides an object-oriented way of

implementing file systems
 VFS allows the same system call interface to be used

for different types of FS
 VFS calls the appropriate FS routines based on the

partition info

Chapter11 FS Implementation

Virtual File System
 Four main object types defined by Linux VFS:
 inode  an individual file
 file object  an open file
 superblock object  an entire file system
 dentry object  an individual directory entry

 VFS defines a set of operations that must be
implemented (e.g. for file object)
 int open(…)  open a file
 ssize_t read()  read from a file

Operating System Concepts – NTHU LSA Lab 13

Chapter11 FS Implementation Operating System Concepts – NTHU LSA Lab 14

Directory Implementation
 Linear lists
 list of file names with pointers to data blocks
 easy to program but poor performance

insertion, deletion, searching

 Hash table – linear list w/ hash data structure
 constant time for searching
 linked list for collisions on a hash entry
 hash table usually has fixed # of entries

Chapter11 FS Implementation Operating System Concepts – NTHU LSA Lab 15

Review Slides (I)
 Transfer unit between memory and disk?
 App  LFS  FOM  BFS I/O Control Devices
 On-disk structure

 Boot control block, Partition control block
 File control block, Directory structure

 In-memory
 Partition table, Directory structure
 System-wide open-file table
 Per-process open-file table

 Steps to open file, read/write file and create file?
 Purpose of VFS?

Chapter11 FS Implementation Operating System Concepts – NTHU LSA Lab 16

Allocation Methods

Chapter11 FS Implementation Operating System Concepts – NTHU LSA Lab 17

Outline
 An allocation method refers to how disk

blocks are allocated for files
 Allocation strategy:
 Contiguous allocation
 Linked allocation
 Indexed allocation

Chapter11 FS Implementation Operating System Concepts – NTHU LSA Lab 18

Contiguous Allocation

Chapter11 FS Implementation

Contiguous Allocation
 Each file occupies a set of contiguous blocks
 # of disk seeks is minimized
 The dir entry for each file = (starting #, size)

 Both sequential & random access can be
implemented efficiently

 Problems
 External fragmentation  compaction
 File cannot grow  extend-based FS

Operating System Concepts – NTHU LSA Lab 19

Chapter11 FS Implementation Operating System Concepts – NTHU LSA Lab 20

Extent-Based File System

 Many newer file system use a modified
contiguous allocation scheme

 Extent-based file systems allocate disk blocks in
extents

 An extent is a contiguous blocks of disks
A file contains one or more extents
An extent: (starting block #, length, pointer to next

extent)
 Random access become more costly
 Both internal & external fragmentation are possible

Chapter11 FS Implementation Operating System Concepts – NTHU LSA Lab 21

Linked Allocation
 Each file is a linked list of blocks

 Each block contains a pointer to the next block
data portion: block size – pointer size

 File read: following through the list

Chapter11 FS Implementation Operating System Concepts – NTHU LSA Lab 22

Linked Allocation
 Problems
Only good for sequential-access files

Random access requires traversing through the link list
Each access to a link list is a disk I/O (because link
pointer is stored inside the data block)

 Space required for pointer (4 / 512 = 0.78%)
solution: unit = cluster of blocks

  internal fragmentation
 Reliability

One missing link breaks the whole file

Chapter11 FS Implementation Operating System Concepts – NTHU LSA Lab 23

FAT (File Allocation Table) file system
 FAT32

 Used in MS/DOS & OS/2
 Store all links in a table
 32 bits per table entry
 located in a section of disk at

the beginning of each
partition

 FAT(table) is often cached
in memory
 Random access is improved
 Disk head find the location of

any block by reading FAT

Chapter11 FS Implementation Operating System Concepts – NTHU LSA Lab 24

Indexed Allocation Example
 The directory contains the address of the file index block
 Each file has its own index block
 Index block stores block # for file data

Chapter11 FS Implementation Operating System Concepts – NTHU LSA Lab 25

Indexed Allocation
 Bring all the pointers together into one location:

the index block (one for each file)
: 1. Implement direct and random access efficiently

2. No external fragmentation
2. Easy to create a file (no allocation problem)

: 1. Space for index blocks
2. How large the index block should be ?

 linked scheme
 multilevel index
 combined scheme (inode in BSD UNIX)

Chapter11 FS Implementation Operating System Concepts – NTHU LSA Lab 26

φ

 directory
 file first index block
 jeep 19

next
data

data

data

data

next
data

data

data

data

next
data

data

data

data

19 24 8

Linked Indexed Scheme

Chapter11 FS Implementation

Multilevel Scheme (two-level)

Operating System Concepts – NTHU LSA Lab 27

 directory
 file first index block
 jeep 16

19
24
 8
-1
-1
-1

16

19
data

data

data

24
data

data

data 8
data

data

data

Chapter11 FS Implementation

Combined Scheme: UNIX inode
 File pointer:4B (32bits)reach only 4GB (232) files
 Let each data/index block be 4KB

Operating System Concepts – NTHU LSA Lab 28

12

fsize: 12×4KB=48KB

fsize: (4096/4)×4KB=4MB

fsize: 210 ×210 ×4KB = 4GB

Chapter11 FS Implementation Operating System Concepts – NTHU LSA Lab 29

Free-Space Management

Chapter11 FS Implementation Operating System Concepts – NTHU LSA Lab 30

Free Space

 Free-space list: records all free disk blocks
 Scheme
Bit vector
Linked list (same as linked allocation)
Grouping (same as linked index allocation)
Counting (same as contiguous allocation)

 File systems usually manage free space in
the same way as a file

Chapter11 FS Implementation Operating System Concepts – NTHU LSA Lab 31

Bit vector
 Bit Vector (bitmap): one bit for each block

 e.g. 00111100111111111001110011000000…..
: simplicity, efficient
 (HW support bit-manipulation instruction)
:bitmap must be cached for good performance

 A 1-TB(4KB block) disk needs 32MB bitmap

Chapter11 FS Implementation Operating System Concepts – NTHU LSA Lab 32

Linked List
 Link together all free blocks (same as linked allocation)
 Keep the first free block pointer in a special location on

the disk and caching in memory
 Traversing list could be inefficient

 No need for traversing; Put all link-pointers in a table(FAT)

Chapter11 FS Implementation Operating System Concepts – NTHU LSA Lab 33

Grouping & Counting
 Grouping (Same as linked-index allocation)
 store address of n free blocks in the 1st block
 the first (n-1) pointers are free blocks
 the last pointers is another grouping block

 Counting (Same as contiguous allocation)
 keep the address of the first free block and # of

contiguous free blocks

Chapter11 FS Implementation Operating System Concepts – NTHU LSA Lab 34

Review Slides (II)
 Allocation:
 Contiguous file allocation? Extent-based file

system?
 Linked allocation?
 Indexed allocation?

Linked scheme
multilevel index allocation
Combine scheme

 Free space:
 Bit vector, linked list, counting, grouping

Chapter11 FS Implementation Operating System Concepts – NTHU LSA Lab 35

Reading Material & HW
 Chap 11
 Problems:
 11.1, 11.2, 11.3, 11.4, 11.7, 11.8

	Operating System:�Chap11 File System Implementation
	Overview
	File-System Structure
	Layered File System
	投影片編號 5
	File-System Implementation
	On-Disk Structure
	On-Disk Structure
	In-Memory Structure
	File-Open & File-Read
	File Creation Procedure
	Virtual File System
	Virtual File System
	Directory Implementation
	Review Slides (I)
	Allocation Methods
	Outline
	Contiguous Allocation
	Contiguous Allocation
	Extent-Based File System
	Linked Allocation
	Linked Allocation
	FAT (File Allocation Table) file system
	Indexed Allocation Example
	Indexed Allocation
	Linked Indexed Scheme
	Multilevel Scheme (two-level)
	Combined Scheme: UNIX inode
	Free-Space Management
	Free Space
	Bit vector
	Linked List
	Grouping & Counting
	Review Slides (II)
	Reading Material & HW

